
libLISA: Instruction Discovery and Analysis on x86-64
JOS CRAAIJO, Open Universiteit, Netherlands
FREEK VERBEEK, Open Universiteit, Netherlands and Virginia Tech, USA
BINOY RAVINDRAN, Virginia Tech, USA

Even though heavily researched, a full formal model of the x86-64 instruction set is still not available. We
present libLISA, a tool for automated discovery and analysis of the ISA of a CPU. This produces the most
extensive formal x86-64 model to date, with over 118 000 different instruction groups. The process requires as
little human specification as possible: specifically, we do not rely on a human-written (dis)assembler to dictate
which instructions are executable on a given CPU, or what their in- and outputs are. The generated model is
CPU-specific: behavior that is “undefined” is synthesized for the current machine. Producing models for five
different x86-64 machines, we mutually compare them, discover undocumented instructions, and generate
instruction sequences that are CPU-specific. Experimental evaluation shows that we enumerate virtually
all instructions within scope, that the instructions’ semantics are correct w.r.t. existing work, and that we
improve existing work by exposing bugs in their handwritten models.
CCS Concepts: • Software and its engineering → Semantics; • Computer systems organization →
Complex instruction set computing; • Hardware→ Semi-formal verification.
Additional Key Words and Phrases: instruction semantics, instruction enumeration, synthesis
ACM Reference Format:
Jos Craaijo, Freek Verbeek, and Binoy Ravindran. 2024. libLISA: Instruction Discovery and Analysis on x86-64.
Proc. ACM Program. Lang. 8, OOPSLA2, Article 283 (October 2024), 29 pages. https://doi.org/10.1145/3689723

1 Introduction
A proper understanding of the microarchitectural behavior of the instructions that can be executed
on a CPU is crucial for any effort related to binaries. Binary verification, binary security analysis,
binary patching, decompilation, and compiler construction/verification each require – first and
foremost – a semantic model of each instruction that is executed by the binary. Semantics are
needed that are trustworthy, executable and complete.
Even with all the research efforts that have been put into this topic [8, 12–15, 18, 20], to this

day there is no complete and trustworthy model of the x86-64 architecture. This is caused by the
sheer complexity of the x86-64 architecture: the informal specification found in Intel manuals is
roughly 4700 pages, and even these are known to be not trustworthy [15]. Specifications of CPU
architectures often rely heavily on manual work, which is error-prone and labor-intensive. This
situation becomes even more dire when taking into account that different x86-64 machines will
behave differently: not only can they have different instruction sets, but behavior is also allowed to
be undefined, in which case the same instruction has different behavior on different machines.

Accurate semantics must inherently be CPU-specific. Consider for example the assembly program
in Figure 1. Nowhere in the literature of the current state-of-the-art can semantics be found that
Authors’ Contact Information: Jos Craaijo, Open Universiteit, Heerlen, Netherlands, jos.craaijo@ou.nl; Freek Verbeek, Open
Universiteit, Heerlen, Netherlands and Virginia Tech, Blacksburg, USA, freek@vt.edu; Binoy Ravindran, Virginia Tech,
Blacksburg, USA, binoy@vt.edu.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART283
https://doi.org/10.1145/3689723

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0001-9799-3517
HTTPS://ORCID.ORG/0000-0002-6625-1123
HTTPS://ORCID.ORG/0000-0002-8663-739X
https://doi.org/10.1145/3689723
https://orcid.org/0009-0001-9799-3517
https://orcid.org/0000-0002-6625-1123
https://orcid.org/0000-0002-8663-739X
https://doi.org/10.1145/3689723
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

283:2 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

1 f0:
2 48 89 f8 mov %rdi ,%rax
3 48 31 ff xor %rdi ,%rdi
4 c0 d0 09 rcl $0x9 ,%al
5 71 04 jno 40115f <skip >
6 b0 3c mov $0x3c ,%al
7 0f 05 syscall
8 skip:
9 c3 ret

Fig. 1. An example of a function in an x86-64 binary. For convenience, the output of the objdump disassembler
is listed next to the bytes. The function moves its first argument RDI into RAX, clears RDI with an XOR, then
performs a rotate-with-carry (rcl) of 9 on RAX, and finally conditionally jumps (jno) to the end of the function
if the overflow flag is unset, or executes a syscall before returning otherwise.

accurately describe the behavior of this function. This is because the value of the overflow flag
after RCL is undefined. For example, on an AMD 3900X the code will execute the SYSCALL when
RAX is 0x80, while on an Intel Xeon Silver 4110 the SYSCALL is never executed. Existing semantics
will either be undefined, or incorrect (see Section 5.2.2).

In this paper we introduce libLISA: a tool that can fully automatically scan a large part of the
instruction space of an x86-64 CPU, discover instructions, and synthesize their semantics. The
result is CPU-specific semantics, i.e., semantics that define what the current CPU actually does
even in the case of instructions whose behavior is considered “undefined” by manually written
specifications. Both discovery and synthesis are completely automated. We rely on as little human
specification as possible. Notably, we do not rely on a handwritten disassembler to dictate which
bitstrings are valid instructions.
For each CPU, the entire space of possible executable bitstrings is grouped into encodings:

bitstrings where certain bits are found to be indicating a certain operand. A hypothetical example
could be the encoding 00a1010aa0 where the three a bits of the bitstring are found to be indicating
an input register. The intuition is that each encoding models a group of actual instructions (i.e.,
bitstrings) that each perform the same operation but on different operands. Note that there is no
relation between the concept of encodings (which are derived bottom-up) and existing concepts
such as mnemonics or instruction variants (which are manually created top-down). Subsequently,
we try to synthesize semantics for each encoding. The result is a partial mapping from encodings to
semantics: partial, as synthesis may fail.

We have run libLISA on five different x86-64 CPU architectures. This enumerates roughly 118 000
encodings per architecture; this number differs based on which x86-64 extensions the CPU supports.
For roughly 88% of all encodings we can synthesize semantics. One run takes roughly three to four
months. We have exposed executable instructions that were undocumented and synthesized their
semantics: these are executable bitstrings that are not in the AMD and Intel manuals and that are
unknown to both assemblers and disassemblers. We mutually compare the five x86-64 machines
by partitioning the set of encodings based on whether their semantics are equivalent. This allows
one to construct instruction sequences that behave differently on different architectures, e.g., that
behave benign on an AMD Ryzen R9 3900X but behave maliciously on an Intel Core i9-13900.
Natural questions to ask are: “Did we find all executable instructions?” and “Are the generated

semantics correct?” We provide extensive evaluation of libLISA’s output in Section 5, but it is
important to note that there is no ground truth. Instruction semantics are notoriously subtle, so even
if we could manually check the semantics for over 100 000 encodings, that kind of verification effort

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:3

would in itself be highly error-prone and untrustworthy. We therefore evaluate these questions
relative to best-effort oracles (e.g., by enumerating all instructions in binaries such as ssh and gcc)
and relative to the most extensive x86-64 specification currently available in related work [8]. This
shows that we find virtually all instructions in scope.

To the best of our knowledge, the work of Dasgupta et al. is the most extensive specification of
x86-64 userspace instructions currently available [8]. Their work is based on the earlier work of
Heule et al. [15] on Strata which provides a way to synthesize the semantics for 1795 instruction
variants. Dasgupta et al. manually extend this work to 3155 instruction variants, which required a
manual effort of eight man-months [8]. That set of instruction variants is not complete: libLISA
enumerates 11 152 encodings that cannot be mapped to instruction variants from this set. A mutual
comparison between the semantics generated by libLISA and their semantics exposed bugs: cases
where their semantics did not represent what actually happens when instructions are executed
on a CPU. Moreover, there are notable differences: 1.) libLISA is fully automated, 2.) libLISA
discovers the instructions instead of leveraging a pre-existing set of instruction variants taken from
a handwritten assembler, and 3.) libLISA generates CPU-specific semantics. A more thorough
comparison to the state-of-the-art can be found in Section 3.

We restrict the enumeration scope of our work to x86-64 userspace instructions. We choose x86-
64, as it is a complex and widely-used instruction set architecture with variable length instructions
between 1 and 15 bytes. Other modern architectures such as ARM or RISC-V have significantly
simpler fixed-length or mostly fixed-length instructions. Additionally, there is no complete and
trustworthy model of the x86-64 architecture.

We restrict instruction prefixes to a limited set of allowed prefixes.We do not analyze concurrency,
memory ordering or timing behavior. We also consider instructions using segment selectors and
segment descriptors out-of-scope, as well as instructions that produce an undefined instruction
exception (e.g., UD). Note that an “undefined instruction exception” is not in any way related to an
“instruction with undefined behavior”. In Section 2.3 we define a clear and unambiguous scope in
more detail.

To summarize, this paper contributes:

(1) a method for automated discovery and analysis of the ISA of a CPU;
(2) an implementation of this method, called libLISA, for CPUs implementing the x86-64 archi-

tecture; and
(3) an extensive evaluation concerning completeness, correctness and the relation between the

output of libLISA and the state-of-the-art.

2 Overview
The input-output relations of libLISA are depicted in Figure 2. It uses a CPU observer, and produces
a set of encodings, as well as semantics for each encoding.

2.1 CPU Observers
A CPU executes instructions: bitstrings of 8𝑛 bits. Examples are the bitstrings 00000000 11011000
and 01000000 00000000 11011000, which correspond to the human description ADD AL, BL.
A CPU instruction operates on a CPU state. CPU state consists of all stored data a CPU can

access: registers, flags, memory, and internal microarchitectural state like caches. We only need a
small part of the CPU state for our analysis. A CPU state is represented as a bitstring. That bitstring
contains the contents of in-scope registers, flags and memory. We only store memory areas when
we have determined that this memory is accessed, as it would be infeasible to store all 264 bytes of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:4 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

libLISA

Encoding
Analysis

Encodings

Synthesis
CPU Observer

Semantics

Fig. 2. The input-output relations of libLISA.

memory a 64-bit CPU could access. A CPU observer is a function that takes as input an instruction
and a CPU state, and produces as output a new CPU state.
Our CPU state representation for x86-64 contains 769 bytes (excluding memory). It includes

general-purpose registers (RAX..R15), RFLAGS, FS and GS. It also includes state from processor state
components 0 (x87), 1 (SSE) and 2 (AVX): the 16 YMM registers (including the exception flags and
DAZ from the MXCSR register), and the ST/MMX registers (including FSW and FTW).

The x86-64 CPU state representation does not contain unused segment registers (CS, DS, SS, ES)
or state from other processor state components not mentioned above (e.g., virtualization registers,
MPX, or AVX-512).

Anything not listed above is not part of the CPU state. It is therefore not observable. This does
not mean that instructions using this state cannot be analyzed. Instead, the resulting semantics
describe the instruction as if the parts of the CPU state that are not in our CPU state representation
do not exist. For example, the semantics for a CLFLUSH (cache flush) instruction will look like an
instruction that does nothing.

2.2 Encodings and Semantics
We introduce the concept of an encoding: a group of instructions that differ only by operands. The
operands must remain of the same type, i.e., registers, flags, immediates or memory. In order to
obtain an encoding, it must have been established what the operands are, and thus what the in-
and outputs of the group of instructions are. An encoding consists of a bitpattern (for grouping
instructions), as well as dataflows (for operand identification).

Example 1. (Encoding) Consider the x86-64 instruction 00000000 11011000. An encoding con-
tains the following information:

Bitpattern: 00000000 110bb0aa
aa: [00 ↦→ RAX, 01 ↦→ RCX, . . .]
bb: [00 ↦→ RAX, 01 ↦→ RCX, . . .]

Dataflows: aa := □1 (aa, bb)
RIP := □2 (RIP)
CF := □3 (aa, bb)
ZF := □4 (aa, bb)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:5

To formalize these notions we introduce various concepts, summarized in Table 1. Immediate
values and registers (and flags) are straightforward. An address computation of type 𝐴 is a function
over registers and immediate values (e.g, RAX + 4 ∗ ECX). A memory access of type𝑀 is a tuple with
an address computation and a size.

Table 1. The components of libLISA’s instruction semantics

Immediate Value 𝐼

Register / Flag 𝑅

Address Computation 𝐴

Memory Access 𝑀 = 𝐴 × N
Part 𝑃 = [N]
Bitpattern 𝐵 = 𝑃 × [B] ⇁ (𝐼 ∪ 𝑅 ∪𝐴)
Destination 𝐷 = 𝑃 ∪ 𝑅 ∪𝑀
Source 𝑆 = 𝐷 ∪ 𝐼
Dataflow 𝐹 = 𝐷 × {𝑆}
Computation 𝐶

Encoding 𝐸 = 𝐵 × [𝐹]
Semantic Σ = 𝐸 × [𝐶]

Bitpatterns. The bitpattern identifies parts of the bitstring, as well as the constituents these parts
are mapped to, given concrete instantiations. We name the parts using underlined letters. Formally,
a part can be modeled as a list of indices within the bitstring. A bitpattern, then, is a mapping from
parts and bitstrings to constituents: either immediate values, registers or address computations.
Reconsidering Example 1, we formally have the parts [0, 1] and [3, 4] and the bitpattern:

⟨[0, 1], 00⟩ ↦→ RAX, ⟨[0, 1], 01⟩ ↦→ RCX, . . .
⟨[3, 4], 00⟩ ↦→ RAX, ⟨[3, 4], 01⟩ ↦→ RCX, . . .

However, we use notation aa as in Example 1 when possible.
Dataflows. A dataflow identifies a list of sources that are used as inputs to a computation that

produces a value stored in a destination. Destinations are represented by parts, registers, or memory
accesses. Sources can be immediate values as well. A dataflow can thus be instantiated using the
part mapping of the bitpattern. Note that it does not define the computation that actually occurs.
In Example 1, these computations thus have been denoted with undefined boxes.

The generated semantics consist of encodings together with defined computations for all dataflows.
These computations describe how new values for destinations are computed using a set of sources.
Effectively, the boxes in Example 1 are replaced with actual functions.

Example 2. (Semantics) The semantics for the encoding from Example 1 are as follows:

□1 (𝑥,𝑦) = 𝑥 + 𝑦 mod 256
□2 (𝑥) = 𝑥 + 2
□3 (𝑥,𝑦) = 𝑥 + 𝑦 > 255
□4 (𝑥,𝑦) = (𝑥 + 𝑦 mod 256) = 0

Normally, instructions increment RIP by the instruction length to advance to the next instruction.
Branch instructions are considered as normal instructions that update RIP by (conditionally)
incrementing RIP with the jump offset. Repeating instructions, such as REPNZ STOSB, perform one
iteration of the repetition at a time, but do not increment RIP as long as the repeat condition holds.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:6 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

2.3 Scope
We restrict the enumeration scope to keep the runtime feasible. We exclude instructions with the
following prefixes from being analyzed: REPNZ (F2), REPZ (F3), segment overrides (26, 2E, 36, 3E, 64,
65), and data overrides and address size overrides (66, 67). We enforce an ordering on instruction
prefixes: a lock prefix (F0) must always appear before REX (40-4F) prefixes.

The primary reason for the restrictions on prefixes is running time. These prefixes can appear in
front of any (non-VEX prefixed) instruction. Even when excluding invalid sequences of prefixes,
including these prefixes would increase runtime by at least a factor of 84×. Segmentation, looping
instructions, and data and address size overrides are excluded because these are the least commonly
used prefixes. Four out of six segment registers are hard-coded to 0, while the other two have
limited uses. The looping prefixes can only be applied to a handful of instructions, and are ignored
for all other instructions. The data size overrides are used for legacy encodings of SSE operations
and 16-bit arithmetic. The address size overrides are only relevant when using 32-bit pointers. As
shown in Table 5 in Section 5, the scope still covers 97.36% of instructions found in Linux binaries.

Furthermore, instructions are deemed out of enumeration scope in the following cases: they
(1) perform a variable number of memory accesses,
(2) do not perform the memory accesses in a fixed order,
(3) always fault (e.g., with the undefined instruction exception UD),
(4) access registers not included in the CPU state representation described in Section 2.1 (e.g.,

MXCSR),
(5) perform operations involving segment selectors (e.g., LAR, LSS),
(6) require privileges (i.e., they do not run in CPU ring 3)
(7) save or load CPU state (e.g., XSAVE or FRSTOR)
The rationale behind this scope is a trade-off between the additional implementation complexity

and additional running time that adding support for a larger scope would entail, versus the yield.
For example, implementing support for a variable number of memory accesses is very hard and will
likely impact the running time, but to the best of our knowledge there is only a single instruction
in the x86-64 architecture that exhibits such behavior.

We would like to stress that, even if instructions are out of enumeration scope, they can still be
analyzed on-the-fly. For example, if one wants to analyze a binary and encounters an instruction
that is outside the enumeration scope, semantics for this instruction can still be generated on-the-fly,
as long as it is within synthesis scope. We demonstrate this in Section 5.4.

We do not synthesize semantics for instructions that perform floating-point arithmetic. We
exclude these, because floating point operations can be approximate. We found two approaches in
related work. The first consists of using uninterpreted functions and leaving the exact semantics
up to the user [8]. This is not suitable for libLISA, as it is impossible to synthesize uninterpreted
functions. The second is to define floating-point semantics in terms of the semantics of floating-
point instructions [15]. We considered this unsuitable for libLISA, as this means the same semantics
might produce different results on different CPUs.
For all other enumerated encodings, i.e., all encodings not using floating-point operations, we

expect synthesis to produce semantics. However, this may fail, e.g., due to a time-out (we have a
bound of 2 tries of at most 7.5 minutes per encoding).

3 Related Work
There is existing work on CPU fuzzing (finding instructions inconsistent with the CPU specification)
and on instruction variant synthesis (producing semantics from instruction variants). Combining

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:7

these efforts would require producing instruction variants from bitstrings. That is not possible,
as instruction variants are manually created top-down and cannot be reconstructed bottom-up
from a CPU. This is exactly the gap that this paper aims to fill: to recover encodings from bitstrings,
making them amenable to synthesis.

CPU fuzzing. Sandsifter [11] introduced tunneling, a technique for efficiently scanning an in-
struction space. By comparing the found instructions with a disassembler library, undocumented
instructions can be identified. This approach was later improved by UISFuzz [19] and extended to
RISC-V and ARM in iScanU [10]. These tools produce lists of instructions that disassemblers are
unable to disassemble. In order to determine what these instructions do, manual analysis is needed.

SiliFuzz [17] generates test cases by fuzzing CPU simulators or disassemblers, and then executes
these test cases on large amounts of CPUs. This allows it to leverage the semantic information
encoded in CPU simulators or disassemblers to verify whether real CPUs are behaving correctly.
Martignoni et al. [21] use a similar approach, but in the opposite direction. A real CPU is used as
the ground truth, and compared against the behavior of emulators using fuzzing. The Cascade [28]
fuzzer relies on a similar idea. It is a RISC-V fuzzer that generates valid, long, complex programs
and uses these to verify the correctness of CPUs.
All the tools mentioned above, assume a correct (partial) specification of the CPU exists, and

aim to verify whether a CPU conforms to this specification. libLISA, on the other hand, assumes
no such specification exists, and attempts to infer the specification from the CPU behavior.

Instruction semantics. There have been many attempts to obtain formal semantics for x86-64. In
this section we summarize related work and compare it to libLISA (see Table 2).

Goel et al. provide an x86-64 ACL2 model [13] which covers mainly one-byte and two-byte x86-64
instructions, consisting of roughly a third of all non-privileged instruction variants. Morrisett et
al. [22] developed a Coq model for a subset of 32-bit x86, which was used to implement a static
analysis tool for Google’s Native Client (NaCl).
The CompCert compiler [18] has a Coq model for x86-32 and x86-64, which is used to prove

equivalence between C source code and the generated assembly. It only defines semantics for the
instruction variants and behavior used by the compiler. For example, only the 32-bit and 64-bit
variants of the CMP mnemonic are specified, because the 8-bit and 16-bit variants are not used.
Similarly, the semantics of the flags for the SHL instruction variants are not specified.
Godefroid and Taly [12] were the first to introduce automatic synthesis for CPU instruction

semantics. Using templates, they synthesized instruction semantics for 534 x86 (32-bit) ALU in-
struction outputs (a typical instruction might have 6 outputs: 1 main output and 5 flag updates).
Heule et al. [15] used a more advanced program synthesis technique, STOKE [25]. From the

semantics of 58 base instructions, STOKE automatically synthesizes semantics for 1764 instruction
variants. It uses the x64asm library as a source of instruction variants. The semantics can be exported
to standard SMTLib syntax [4] using a tool provided by the authors. libLISA also provides tools to
export semantics to SMTLib syntax.
STOKE supports both bitwise, integer and floating point instructions. It excludes x87, MMX,

cryptographic, system-level and string instructions. libLISA does not support synthesizing floating
point operations, but does analyze all instructions with in-scope prefixes.
Dasgupta et al. manually extended the work of Strata, producing the semantics to all 3155

“non-deprecated” x86-64 instruction variants supported on the Haswell microarchitecture [8]. This
process took 8 man-months. The semantics are specified in the K framework. While it is possible
to import SMTLib assertions for program verification, Dasgupta et al. do not provide a tool that
can export the semantics to SMTLib format. We discuss this in more detail in Section 5.2.1.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:8 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

Table 2. Comparison of related work. (†): Dasgupta et al. augment Strata’s synthesized semantics with man-
ually written semantics. (‡): Strata overlays a manual specification of undefined behavior on the synthesized
semantics to make them non-CPU-specific.

Goel CompCert Strata Dasgupta libLISA
Automatic - - ✓ - ✓
Source of instructions Human Human Disassembler Disassembler Enumeration
Source of semantics Human Human Synthesis Human† Synthesis
CPU-specific - - -‡ - ✓
SMTLib export - - ✓ - ✓
Executable ✓ ✓ ✓ ✓ ✓

Table 3. Comparison of types of instructions with semantics covered by STRATA, Dasgupta et al. and libLISA.
(†): The REP prefix is out-of-scope, but non-repeating string instructions are synthesized.

STRATA Dasgupta libLISA
Integer, bitwise, control flow ✓ ✓ ✓
Privileged instructions - - -
x87 - - -
MMX - - ✓
String instructions - ✓ ✓†

SSE/AVX (floating point) ✓ ✓ -
SSE/AVX (integer) ✓ ✓ ✓

For both Strata and Dasgupta et al., we present a comparative overview of the types of instructions
for which they provide semantics in Table 3.
For other architectures, such as ARM and RISC-V, complete formal models do exist. SAIL [3]

contains formal semantics for ARM, RISC-V and CHERI-MIPS. The ARM semantics have been
derived from the ARM Specification Language [23], while the RISC-V and CHERI-MIPS semantics
have been handwritten. It would be interesting to implement libLISA for these architectures and
compare libLISA’s results against the formal models.

Formal models such as x86-TSO focus on defining concurrent memory accesses [26, 29]. While
these models also include instruction semantics, their main contribution is the memory model
itself. The models are largely orthogonal to our work: x86-TSO relies on instruction semantics
to determine what kinds of memory accesses an instruction performs. The x86-TSO model only
describes observable memory ordering behavior of a CPU. This suggests that libLISA could be
expanded to generate semantics that define memory accesses in terms of x86-TSO’s model.

4 Approach
We present an approach for systematically discovering and analyzing instructions on a CPU. We
provide an overview of the three main components of this approach: 1.) the CPU observer, 2.)
enumeration based on encoding analysis, and 3.) synthesis.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:9

4.1 CPU Observer
In order to analyze instructions, we need a CPU observer. This CPU observer needs to be fast,
sandboxed and unrestricted. It needs to be fast, because we will perform tens of millions of obser-
vations for each instruction we analyze. Instruction execution must be sandboxed, such that it
does not affect our analysis tool or the operating system in unintended ways. There must be as
few restrictions on the input CPU state as possible, so that we can freely observe as much of the
behavior of the instruction as possible.

libLISA

Shared memory
(ring buffer)

QEMU

QEMU

Observer kernel

Userspace
(executes observation request)

Write request Read result

Read request Write result

Context switch Interrupt

Fig. 3. The CPU observer uses QEMU with KVM hardware-acceleration to run an observation kernel, and
execute observations in userspace inside the virtualized environment.

There are two common ways to observe instruction execution: in-process observation [10, 11, 15,
19] and out-of-process observation [10]. Neither of these methods fulfill all requirements. Therefore,
we have developed a new instruction observation method.

Both in-process observation and out-of-process observation ultimately execute an instruction in
a userspace process. After execution, control over program flow is regained using the trap flag,
guard pages or interrupt instructions. A guard page is an unmapped page that is placed in memory
right after the instruction. When the CPU has executed the instruction and attempts to load the
next instruction, a page fault is triggered. This page fault is intercepted by the program, and used
to regain control. The trap flag is a debugging flag available on many modern CPU architectures,
including x86-64. It triggers a CPU interrupt after executing a single instruction. This interrupt is
intercepted by the program, and used to regain control. Interrupt instructions are special debugging
instructions that trigger a debugging interrupt. On x86-64, the INT3 instruction is commonly used
for this purpose. After execution, the result is saved and normal program execution is resumed by
loading the original program state from memory.
In-process observation consists of storing the program state in memory, placing the instruction

at a known memory address, and then jumping to that address. This approach is fast, but not
sandboxed, and the input CPU states cannot use the address space used by the program itself or
reserved by the kernel (Linux reserves half of the address space).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:10 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

Out-of-process observation consists of spawning a separate observation process. This observation
process is then instrumented using a debugging interface like ptrace. CPU state can be modified
through this interface, and memory can be mapped and unmapped by placing assembly for the
correct system calls in the memory of the observation process and executing it via the debugging
interface. While this approach provides some sandboxing, it shares many of the same restrictions
on input CPU states as in-process observation, and is very slow because the debugging interface
has a lot of overhead.
We have developed a new observation approach based on hardware-accelerated virtualization

and fast communication via shared memory. The approach is depicted in Figure 3. It consists of
two components: a process running on the host machine, and a small bare-metal observer binary
running in a virtual machine. Using a ring buffer [5], these components can communicate without
the overhead of syscalls. The observer running in the virtual machine performs context switches
to userspace to observe instructions. This provides hardware-enforced protection to the observer
from the effects of the instruction execution.

The observer repeatedly reads an observation request from the ring buffer, executes the request,
and then writes the result back to the ring buffer. Observation requests are executed similar to how
an operating system performs context switches between processes. Whereas an operating system
typically restores CPU state from a process control block, the observer restores CPU state from the
observation request in the ring buffer. It then switches to userspace, allows the CPU to execute
an instruction, and then regains control. Finally, the observer saves the CPU state directly to the
observation result in the ring buffer.
To regain control, the observer uses INT3 interrupt instruction by default. If we detect that the

instruction does not increment the program counter by the length of the instruction (e.g., the
instruction is a branching instruction), we are unable to predict the address where we need to
place the INT3 interrupt instruction. In that case, we fall back to using the trap flag. We use the
INT3 interrupt instruction by default, because it does not require writing a flag in the debugging
registers and is therefore faster.

4.2 Enumeration

Enumeration

Bitstring: 11001001

Encoding
Analysis

CPU Observer

Encoding

Bitpattern: 110bb0aa

Fig. 4. A feedback loop from Encoding Analysis to enumeration makes it possible to fully enumerate large
instruction spaces.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:11

The goal of enumeration is discovering all in-scope instructions on a CPU. We do this by
repeatedly selecting an uncovered instruction, and analyzing it.

For large instruction sets like x86-64, it is impossible to enumerate every individual bitstring. For
example, the MOVABS RAX, 0x152, instruction contains a 64-bit immediate value. It is impossible to
exhaustively enumerate all 264 values of this immediate. We instead skip over parts of the instruction
space using 1.) bitpatterns from encodings, 2.) randomized search and 3.) tunneling.
As described in Section 2, every encoding represents a group of instructions described by its

bitpattern. During enumeration, we run encoding analysis on each valid instruction. We then use
the bitpattern from the resulting encoding to skip all instructions it matches. This is depicted in
Figure 4. For example, for MOVABS RAX, 0x152 encoding analysis will yield an encoding with
a bitpattern containing two parts: a 64-bit part for the immediate value and a 4-bit part for the
destination register. This allows us to skip the 268 − 1 other instructions covered by this encoding.
Algorithm 1: Enumeration.
Result: a set of enumerated encodings 𝐸
𝐸 ← ∅;
𝑆 ← ∅;
𝐼 ← NextUncoveredInstruction(𝑆);
while 𝐼 ≠ None do

if IsValidInstruction(𝐼) then
𝑒 ← AnalyzeEncoding(𝐼);
if 𝑒 ≠ Err then

𝐸 ← 𝐸 ∪ {𝑒};
𝑆 ← 𝑆 ∪ {𝑖 | 𝑖 matches bitpattern of 𝑒};

else
𝑆 ← 𝑆 ∪ Tunnel(𝐼);

end
else

𝑆 ← 𝑆 ∪ RandomizedSearch(𝐼);
end
𝐼 ← NextUncoveredInstruction(𝑆);

end
return 𝐸

The enumeration algorithm is depicted in Algorithm 1. It takes no inputs, and produces a
set of encodings 𝐸, covering all valid instructions in the instruction space. It makes use of five
functions: NextUncoveredInstruction, IsValidInstruction, RandomizedSearch, Tunnel and
AnalyzeEncoding.

The function NextUncoveredInstruction takes as input a set of covered instructions 𝑆 . It
returns an instruction 𝐼 which is not in the set of covered instruction 𝑆 . In our implementation, we
start at the byte sequence 00 and then sequentially return all other byte sequences in lexicographical
order. We picked a lexicographical ordering because it is simple to implement. The actual order is
not relevant for the algorithm.

The function IsValidInstruction takes as input an instruction 𝐼 and checks if it is valid, i.e., if
executing it does not cause the CPU to throw the undefined instruction exception.
The function RandomizedSearch takes as input an instruction 𝐼 and performs a randomized

search for the first valid instruction after 𝐼 . We use 𝐼 as lower bound and the highest possible
instruction (FFFFFFFF . . .) as upper bound for the search. We then repeatedly pick random byte

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:12 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

sequences within the search range. If the random byte sequence is a valid instruction, we reduce
the upper bound. When the upper bound has not changed for 250 000 iterations, it returns the set
of instructions between 𝐼 and the upper bound.

The function Tunnel takes as input an instruction 𝐼 and performs tunneling [10, 11, 19] to find the
first valid and analyzable instruction. Tunneling initially steps through byte sequences one-by-one.
Every 28 steps the step size is multiplied by 28. Whenever the instruction length changes, the step
size is reset to zero. This makes the number of steps needed to skip over an instruction with an
invalid 64-bit immediate value 28 ∗ 8 instead of (28)8. Once a valid and analyzable instruction is
found, it returns the set of instructions between 𝐼 and the valid and analyzable instruction.

The function AnalyzeEncoding takes as input an instruction 𝐼 and runs encoding analysis on the
instruction. Encoding Analysis is described in Section 4.3. Encoding analysis returns an encoding 𝑒 .
This encoding has a bitpattern, which represents the set of instructions covered by the encoding.

The algorithm repeatedly selects the next instruction not yet covered, and analyzes it. If the
next instruction is not a valid instruction, randomized search is used to skip it and all consecutive
invalid instructions. If it is a valid instruction, encoding analysis is run. Normally, encoding analysis
produces an encoding. If this is the case, the bitpattern is used to skip over all other instructions
covered by the encoding. Finally, in some cases encoding analysis might be unable to analyze the
instruction. This can happen for example when the instruction violates some of the assumptions
we have listed in Section 2.3. In such a case, we do not have a bitpattern, and we also cannot use
randomized search. Instead, we resort to tunneling [10, 11, 19].

Skipping using bitpatterns guarantees that we do not skip over valid instructions. Randomized
search and tunneling may cause us to skip over valid instructions. We therefore use bitpattern
based skipping whenever possible.
As the instruction’s length is often determined by a few bits in a single byte of the instruction,

tunneling generally works correctly. However, there are edge-cases where this does not work. For
example, consider the case where byte sequences 1b00-1cff are invalid, except for 1c05. In this
case, tunneling will step through 1b00-1bff in steps of 1, but after checking 1c00 the step size
is increased to 256, which means the next instruction checked is 1d00. This skips over the valid
instruction 1c05. Because of these limitations, we skip instructions using bitpatterns or randomized
search whenever possible.

Randomized search is more reliable than tunneling, but only applicable for invalid instructions.
It might still skip over valid instructions. This can be the case when the chance of finding the
valid instruction in 250 000 tries is low. We picked the threshold through testing against tunneling.
Randomized search with a threshold of 250 000 iterations performs better or equivalent to tunneling
for all in-scope areas of the x86-64 instruction space. In particular, it correctly handles the tunneling
edge-case described above.

4.3 Encoding Analysis
The goal of encoding analysis is to generate an encoding, i.e., parts and dataflows, from a concrete
instruction bitstring. We propose a novel infer-generalize-specialize approach. This approach con-
sists of three steps: inferring dataflows, generalizing the dataflows into an encoding, and specializing
the resulting encoding. The infer step produces dataflows which are consistent with all concrete
observations. The generalization step uses these dataflows as a basis to form a generalized encoding.
The generalization step is purely speculative, and might produce an encoding with incorrect

generalizations. Generalizations are incorrect when the dataflows in the resulting encoding are
not consistent with actual CPU behavior. To counter this, the specialization step removes these by
specializing the encoding for cases where a generalization is proven incorrect via an observation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:13

Each of these three steps require the generation of random CPU states. In the rest of this
subsection, we first describe how this is done, and then provide details on each of the three steps of
the infer-generalize-specialize approach.

Infer dataflows

Generalize

Specialize

Fig. 5. The infer-generalize-specialize approach. The green circles are correct dataflows, the red squares are
incorrect dataflows, and the dashed boxes represent encodings. The infer step produces some (in this case,
two) correct, concrete dataflows. The generalize step combines these concrete dataflows into an encoding,
but might make incorrect generalizations. The specialize step removes these incorrect generalizations.

4.3.1 Random CPU State Generation. For small CPU architectures, it is sometimes possible to
exhaustively verify all possible input states. For modern architectures such as x86-64, exhaustive
verification is impossible without access to hardware designs. We therefore can only verify the
semantics that we generate on a subset of all possible input states.
Uniformly distributed random input states are often not useful for fuzzing. For example, when

incrementing a 32-bit value we only have a 1 in 232 chance of seeing a carry in the highest bit if
we pick uniformly distributed random numbers (the only case where this happens is 0xFFFFFFFF).
Interesting inputs often contain many consecutive zeros or ones. Therefore, our random generation
is based on the computation (𝑅64 << 𝑅𝑧) >> 𝑅𝑘 where << and >> are bit shifts, 𝑅64 is a uniformly
distributed random 64-bit number and 𝑅𝑧, 𝑅𝑘 are random uniformly distributed valid bit shift counts.
The resulting number is then randomly negated or kept as-is. This computation produces numbers
where the number of leading and trailing zeros and ones are approximately uniformly distributed.
This random generation needs to run billions of times for each encoding we analyze. Improving
quality of the random numbers reduces the speed at which we are able to generate new random
numbers. We have therefore opted to use this simple expression consisting of only two bit shifts.

4.3.2 Inferring Dataflows. For a given an instruction 𝐼 consisting of 𝑁 bits, we analyze the instruc-
tion 𝐼 as well as the bit-flipped variants flip(𝐼 , 𝑛) for each 0 ≤ 𝑛 < 𝑁 , where flip(𝐼 , 𝑛) bit-flips the
𝑛th bit in 𝐼 . This produces dataflows for 𝑁 + 1 instructions that we will generalize into an encoding.
The analysis is run separately for each of the 𝑁 + 1 instructions.

Inferring dataflows consists of analyzing memory accesses and dataflows. Analyzing memory
accesses consists of finding a set of accesses𝑀 as defined in Section 2 that encompass all memory
accessed by an instruction. This makes it possible to reduce the CPU state to include just the parts

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:14 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

of memory that are read or written by the instruction. Analyzing dataflows consists of finding a set
of source and destination tuples (𝑆, 𝐷) that accurately describes all data-dependencies between the
input and output CPU state of the instruction.
The algorithm for identifying memory accesses is shown in Algorithm 2. It takes as input an

instruction 𝐼 and produces the set of memory accesses𝑀 performed by 𝐼 . It makes use of three func-
tions: FindPageFaults, FindAddressComputations and AccessGeneratesPageFaultOnNextPage.
The function FindPageFaults takes as inputs the instruction 𝐼 and the current set of memory

accesess𝑀 . It generates the set of page faults 𝑃 that happens when instruction 𝐼 is executed on a
set of randomly generated CPU states where all accesses in𝑀 are mapped.

The function FindAddressComputation takes as input instruction 𝐼 , the current set of memory
accesses𝑀 and a set of page faults 𝑃 . It aims to find an address computation 𝑎 that is consistent
with all page faults 𝑃 . A computation is consistent with a page fault it the computation either
returns the same address as the page fault, or if there is a computation in𝑀 that already maps to
the same page.

The function AccessGeneratesPageFaultOnNextPage takes as input instruction 𝐼 , the current
set of memory accesses𝑀 , the new address computation 𝑎 and a size 𝑛. It generates a CPU state
which places the new access 𝑎 exactly 𝑛 bytes away from the end of a page, and executes instruction
𝐼 on this state. It returns whether the execution of instruction 𝐼 caused a page fault at the first
address of the next page.
Algorithm 2:Memory access identification.
Input: an instruction 𝐼

Result: a set of memory accesses𝑀
𝑀 ← ∅;
𝑃 ← FindPageFaults(𝐼 , 𝑀);
while 𝑃 ≠ ∅ do

𝑎 ← FindAddressComputation(𝐼 , 𝑀, 𝑃);
𝑛 ← 1;
while AccessGeneratesPageFaultOnNextPage(𝐼 , 𝑀, 𝑎, 𝑛) do

𝑛 ← 𝑛 + 1;
end
𝑀 ← 𝑀 ∪ {(𝑎, 𝑛)};
𝑃 ← FindPageFaults(𝐼 , 𝑀);

end
return𝑀

Algorithm 2 infers memory accesses iteratively. Each iteration, we generate a set of page faults
𝑃 that occur with the current set of memory accesses 𝑀 . If 𝑃 is not empty, this means that the
instruction 𝐼 performs memory accesses that we have not covered in𝑀 . We find a computation
that is consistent with all page faults 𝑃 , and then determine the size of the access by generating
input states that place the access near the end of a page. If we place the access too close to the end
of the page, such that it does not entirely fit on the page, we will get a page fault. By iteratively
increasing the distance to the end of the page until the access fits on the page, we can determine
the size of the access. We then extend the set of memory accesses𝑀 with the new computation 𝑎

and size 𝑛, and repeat this process.
After inferring all memory accesses, we can infer the dataflows.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:15

Algorithm 3: Dataflow analysis.
Input: an instruction 𝐼 and a set of memory accesses𝑀 for 𝐼
Result: a set of dataflows 𝐷
𝐷𝑏 ← ∅;
df← FuzzForDataflow(𝐼 , 𝑀, 𝐷𝑏);
while df ≠ None do

𝐷𝑏 ← 𝐷𝑏 ∪ {df};
df← FuzzForDataflow(𝐼 , 𝑀, 𝐷𝑏);

end
return Reduce(𝐷𝑏)

The algorithm for inferring dataflows is shown in Algorithm 3. It takes as input an instruction 𝐼

and the set of memory accesses𝑀 for this instruction, produced by Algorithm 2. It makes use of
two functions: FuzzForDataflow and Reduce.
The function FuzzForDataflow takes as input the instruction 𝐼 , the set of memory accesses

𝑀 , and the set of found byte-wise dataflows 𝐷𝑏 . It returns a dataflow (𝑏𝑠 , 𝑏𝑑), which represents a
dataflow between byte 𝑏𝑠 in the input state and byte 𝑏𝑑 in the output state. We say that there is a
dataflow (𝑏𝑠 , 𝑏𝑑) if there is some input CPU state for which a change to the value of 𝑏𝑠 causes the
value of 𝑏𝑑 in the output CPU state to change. The function only returns dataflows that are not
already present in the set of found byte-wise dataflows 𝐷𝑏 . It uses fuzzing to try and find a pair of
CPU states which demonstrates the existence of a dataflow. If no dataflow is found, it returns None.
The fuzzing strategy consists of generating a random CPU state, and then generating another

state by randomly changing some part of the state. This can be a single byte, a subset of all bytes
not present in the sources in the hypothesis, or all bytes except some subset of the sources in
the hypothesis. We exclude some sources of the hypothesis to ensure that we can find sources
for destinations that are already present in the hypothesis. That is, if we already know that a
modification in 𝑏𝑠 causes a change in 𝑏𝑑 , we must generate pairs of states where 𝑏𝑠 is identical to
be able to discover that a modification in 𝑏′𝑠 also causes a change in 𝑏𝑑 .

The function Reduce reduces the dataflows between individual bytes in the CPU state to dataflows
between storage locations, by merging byte dataflows of consecutive bytes, and translating byte
indices to storage location names. It takes as input the set of found byte-wise dataflows 𝐷𝑏 , and
returns a set of dataflows𝐷 as described in Section 2.2. This makes the dataflows usable in encodings
and reduces noise. Because we rely on fuzzing, sometimes not all dataflows are found. By merging
dataflows, the chances of this showing up in the resulting dataflows are reduced.

4.3.3 Generalizing Dataflows into Encodings. We generalize an encoding from the set of inferred
dataflows from the previous Section. For each bit-flipped instruction flip(𝐼 , 𝑛), we compare the
dataflows and memory accesses against those of the original instruction 𝐼 .
Bit-flipping has been shown to be effective for guiding disassembler fuzzing [16]. Rather than

guiding a fuzzer, we use bit-flipping to determine which bits are likely to belong to parts of the
encoding. This requires more extensive analysis of the changes that occur when flipping a bit.

In modern general-purpose instruction sets like x86-64, bits in an instruction often serve a single
purpose. For example, there can be a bit in an instruction that is used in the selection of the source
register. That bit typically is not also used for other things such as a memory computation or a
destination register. When changing those bits, only the source register changes. This reduces the
complexity of the instruction decoder in the CPU, as those bits can be wired directly to the register

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:16 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

bank without further processing. We check for changes that are common uses of bits that serve a
single purpose:

(1) If a register in the dataflows changes, the bit is a register-bit candidate
(2) If the output of some dataflows changes, the bit is an immediate-bit candidate
(3) If the offset of a memory access changes, the bit is an immediate-bit candidate
(4) If a memory computation changes, the bit is a memory-computation-bit candidate
(5) If more than one of the above apply, the bit is unknown

We form parts from using the candidates found from comparing the bit-flipped instruction
variants. Each candidate affects certain storage locations in the dataflows or memory accesses. We
consider candidates to be similar if they affect the same storage locations in the dataflows and
memory accesses. Each set of similar register-bit candidates forms a register part. Consecutive
and similar immediate-bit candidates from immediate value parts. Each set of similar memory-
computation-bit candidates form memory computation parts. Two parts conflict if they both share
one or more affected storage locations. We repeatedly remove the smallest part until there are no
conflicting parts.

For register parts, we additionally enumerate every value to determine the exact register. We do
this separately for each register part. For example, if we have three register parts, each 4 bits in
size, we will run per-instruction dataflow analysis on 33 more instructions, 11 for each register
part. The other five possible values for each register part have already been analyzed during the
bit-flipping phase.

We do not aim to recover the exact encoding such as described in, for example, the Intel Reference
Manual. This would be impossible, as we infer encodings bottom-up, rather than top-down. We
also do not aim to identify every part in an encoding. The primary goal is to produce encodings
that make enumeration feasible. This only requires identifying some subset of parts that is large
enough to allow efficient skipping of instructions.

Example 3. Consider instruction 𝐼 = 0100. Let us assume that we have inferred that it performs no
memory accesses, and has the following dataflows:

RIP := □2 (RIP)
BX := □2 (AX)

In order to generalize this dataflow into an encoding, we inspect the dataflows of the four flipped
variants, determine the change compared to the original dataflow, and determine if the bit is a candidate
for a part. This comparison is summarized as follows:

Variant 1100 0000 0110 0101

Dataflows (Invalid) RIP := □2 (RIP)
AX := □2 (AX)

RIP := □2 (RIP)
BX := □2 (CX)

RIP := □2 (RIP)
BX := □2 (BX)

Change N/A BX ↦→ AX AX ↦→ CX AX ↦→ BX
Location N/A Destination BX Source AX Source AX
Candidate N/A Register-bit Register-bit Register-bit

There are candidate bits for two parts: a 1-bit register part that determines the destination register,
and a 2-bit part that determines the source register. These parts do not conflict. We therefore do not
need to remove any of the parts.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:17

Finally, we also inspect the dataflows for 0111 to fully cover the possible register mappings for the
2-bit part that determines the source register. From this information, we can build the encoding:

Bitpattern: 0baa
aa: [00 ↦→ AX, 01 ↦→ BX, 10 ↦→ CX, 11 ↦→ DX]
b: [0 ↦→ AX, 1 ↦→ BX]

Dataflows: RIP := □2 (RIP)
b := □1 (aa)

4.3.4 Specializing Encodings. Specialization aims to fix any incorrect generalizations that might
have occurred. Dataflows are generalized into an encoding based on heuristics. This happens
without any verification: generalization is based on heuristics, it does not use observations. Since
generalization only looks at single bit-flips, more complex interactions between multiple bits are
not accounted for.
The original instruction 𝐼 is used as the ground truth for specialization. We try to find another

instruction 𝐼 ′ also covered by the encoding, where the sources (i.e., registers or memory) can be
assigned values such that at least one destination has a different output after executing 𝐼 compared
to 𝐼 ′. If we find such an instruction 𝐼 ′, the encoding is not describing the instruction correctly. We
fix this by removing bits from parts to ensure that the encoding no longer covers 𝐼 ′.

To determine which bit to remove, we first find many instructions using the method above. We
then find the index of the bit that most often differs from the original instruction 𝐼 , and remove this
bit. To remove a bit, we simply replace it with the concrete value from 𝐼 . For example, consider the
case where 𝐼 = 00000000 11000001 which we have generalized into an encoding with bitpattern
00000000 110bb0aa. To remove the last bit, we replace it with the last bit of 𝐼 , which is a 1:
00000000 110bb0a1. Additionally, the part mapping of the bitpatterns and the dataflows have to
be updated accordingly to account for the change of aa into a.

We use fuzzing to identify incorrect generalizations. The fuzzing strategy consists of generating
pairs of CPU input states that are identical except for the instruction that is executed.

Example 4. Consider the encoding from Example 3. Through fuzzing, we find the following two
input-output examples:

Instruction Input state Output state

0110 CX = 5 BX = 10
0010 CX = 5 AX = 37

According to the encoding, the value of BX after executing 0110 should be equal to the value of AX
after executing 0010. This is not the case. Therefore, we have found an incorrect generalization. To
resolve this, we need to repeatedly remove bits from parts until there we can find no more incorrect
generalizations.
We determine that in the cases where we find incorrect generalizations, 100% of the time bit 3

(counting right-to-left, starting at 1) is 0, which is different from its value in the original bitstring (0).
The other bits are different around 25% of the time. We therefore remove bit 3 from the encoding. This
gives the following specialized encoding:

Bitpattern: 01aa
aa: [00 ↦→ AX, 01 ↦→ BX, 10 ↦→ CX, 11 ↦→ DX]

Dataflows: RIP := □2 (RIP)
BX := □1 (aa)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:18 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

4.4 From Encoding to Semantics
We implement existing program synthesis techniques to demonstrate the amenability of encodings
to automated synthesis. Program synthesis consists of generating a program from a specification. As
we assume no access to the hardware designs of the CPU, the only specification we can generate are
input/output examples (I/O examples). An I/O example is a tuple consisting of the inputs provided
to the program, and the corresponding correct output. For example, an I/O example for a function
𝑓 (𝑥0, 𝑥1) = 𝑦 might be 𝑥0 = 4, 𝑥1 = 2, 𝑦 = 6.
For each encoding, synthesis has a timeout of 7.5 minutes. This timeout has been chosen such

that it allows sufficient time for synthesizing more complex semantics, while keeping the runtime
acceptable. Because synthesis uses randomly generated I/O examples, runtime varies based on the
quality of the I/O examples. If synthesis failed or timed out, this might be because the first few I/O
examples were low-quality. This might have caused synthesis to spend most of the allotted time
searching in the wrong direction. Starting with a clean slate with different random I/O examples
can resolve this. Therefore, we re-run synthesis a second time if the first attempt failed or timed
out.
An encoding consists of multiple dataflows. Each dataflow can be synthesized independently.

We represent the dataflow as a function □(𝑥0, 𝑥1, . . .) = 𝑦, where 𝑥0, 𝑥1, etc. are the sources of
the dataflow, and 𝑦 is the destination. We use program synthesis to find an implementation for
function □.
We need a synthesis algorithm that can operate on I/O examples, is efficient, and is suited for

synthesizing CPU semantics. By combining existing techniques, we construct such an algorithm.
We use Counter-Example Guided Inductive Synthesis (CEGIS) [2, 27]. CEGIS consists of two

parts, a learner and an oracle. The learner repeatedly forms hypotheses, and the oracle provides
counterexamples to these hypotheses. This process repeats until the hypothesis is correct, i.e., the
oracle cannot present a counterexample.

Our learner is an I/O example-based synthesis algorithm. It generates hypotheses based on the
I/O examples it has received from the oracle. Our oracle is a fuzzer that will verify the hypothesis
against at most 2 million randomly generated input states. It uses the CPU as the ground truth, and
tries to find counterexamples that show that the hypothesis is not equivalent to the actual CPU
behavior.

The fuzzer uses three random generation techniques: normal generation, generation with equal-
ities and generation from interesting inputs. Normal generation re-uses the random generation
from encoding analysis, described in Section 4.3. Generation with equalities also uses the random
generation from encoding analysis, but chooses one storage location at random and copies its value
to another storage location chosen at random. This produces an input state where two storage
locations are equal. Finally, generation from interesting inputs randomly picks an interesting input
state, and randomly modifies a storage location, a single byte in a storage location, or a single bit
in a storage location. An input state is interesting if it disproved any of the previous hypotheses.
Our learner uses decision trees to scale synthesis to larger problems, and uses enumerative

program synthesis to synthesize individual expressions in the decision tree. We synthesize Boolean
decision trees using a divide-and-conquer technique based on work by Alur et al. [1]. Decision trees
have conditions (integer expressions returning only 1-bit values) on non-leaf nodes, and integer
expressions on leaf nodes.

Sincewe need to synthesize programs from only I/O examples, our only choice of search technique
is enumerative program synthesis. Rather than enumerating all possible programs from a grammar,
we enumerate over programs derived from a list of templates. A template is an expression that
contains zero or more holes. Synthesis consists of enumerating all possible ways to fill holes, for

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:19

each template. In contrast to synthesis using grammars, a hole can only be filled with a constant or
an input. We use separate lists of templates for integer expressions and conditions.
The choice for template-based synthesis is primarily motivated by performance benefits. By

using a set of templates that is known and enumerable at compile-time, we are able to compile the
templates to machine code. This significantly reduces the overhead of template evaluation, and
increases synthesis performance.
We use 143 templates for integer expressions, and 553 templates for conditions (of which 351

are derived automatically from 39 integer expressions). These templates are handwritten. The
integer expression templates consist of (combinations of) arithmetic operations such as addition
or multiplication, and logical operations, such as AND, OR, or bitshifts. The Boolean templates
primarily consist of zero checks, sign checks and parity computations derived from the integer
expressions. They also contain more generic conditions such as _+ _ < (_ << _). We see that these
conditions end up being used, for example, to saturate addition (𝐴 + 𝐵 < (1 << 8)).
Compared to Godefroid and Taly [12], we define many more templates. This is explained by

counting differences, scope differences and flexibility differences. Godefroid and Taly’s templates
are parameterized by operand size and operation, while we use separate templates for each com-
bination of parameters. For example, Godefroid and Taly’s “Bit-wise group” flag output template
corresponds to around 30 of our templates. While Godefroid and Taly’s scope is limited to x86-32
ALU instructions, our scope is all userspace non-floating point instructions. Additionally, we include
x86-64 extensions such as BMI that Godefroid and Taly do not support. Godefroid and Taly’s flag
templates are tailored to the specific operation that is being synthesized. For example, all flag
outputs of Godefroid and Taly’s “Bit-wise group” must be a combination of up to three Boolean
terms over the main output. Our templates are defined independently of a main output, which is
necessary because we do not have access to a disassembler library to identify the main output.
Expressions are synthesized by filling in templates with holes. Each template contains zero or

more holes. A hole can be filled with a constant or an input 𝑥𝑖 . Although individual expressions are
constrained to predefined templates, the combination of multiple templates in decision trees makes
this approach efficient. For example, a conditional jump instruction might perform a computation
similar to if (¬𝑎 ∧¬(𝑏 ⊕ 𝑐)) ⊕ 𝑑 then 𝑥 +𝑛 else 𝑥 + 2 fi to update the instruction pointer. It would
be infeasible to generate such an expression in one go. However, because we generate a decision
tree we can split this expression into six sub-expressions: 𝑎, 𝑏, 𝑐 , 𝑑 , 𝑥 + 𝑛 and 𝑥 + 2. All of these
expressions are very easy to synthesize.

An expression consists of function calls and terms. Expressions always operate on signed 128-bit
integer values. Function calls are simple built-in operations, e.g., addition or bit shifting. Terms are
either constant values or inputs. Constant values 𝐶 can be 0..16, 8𝑛 − 1 and 8𝑛, where 1 ≤ 𝑛 ≤ 8.
An input is the value of a source, i.e., 𝑥𝑖 , and an interpretation.

Dataflow sources and destinations can be integer values smaller than 128 bits (e.g., 64-bit general-
purpose registers) or byte sequences (e.g., memory). Therefore, inputs must be converted to 128-bit
integer values, and outputs must be converted back to the right size. Inputs can be interpreted as
signed or unsigned, and big-endian or little-endian values. Outputs are converted back by taking
the lower 𝑁 bits of the 128-bit output of the expression. When a destination is a byte sequence, the
output can either be encoded to bytes as big-endian or as little-endian.

5 Results
We analyzed the x86-64 CPUs listed in Table 4. The AMD 3900X and AMD 7700X use the Zen 2 and
Zen 4 microarchitecture respectively. The Intel i9-13900 has two different kinds of cores. Perfor-
mance cores (𝐴2) use Raptor Cove, while efficiency cores (𝐴3) use the Gracemont microarchitecture.
The Intel Xeon 4110 Silver uses the Skylake microarchitecture, a predecessor of Raptor Lake.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:20 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

Table 4. Overview of the CPUs we analyzed.

Name Microarchitecture
𝐴0 Ryzen R9 3900X AMD - Zen 2
𝐴1 Ryzen R7 7700X AMD - Zen 4
𝐴2 Core i9-13900 (p) Intel - Raptor Cove
𝐴3 Core i9-13900 (e) Intel - Gracemont
𝐴4 Xeon Silver 4110 Intel - Skylake

Table 5 provides an overview of some of the results. Per architecture, it provides the number of
generated encodings and the total time it took to run libLISA.

Table 5. Overview of the results.

Encodings Synthesized Undocumented Runtime 𝐶in (%) 𝐶out (%) 𝐶random,in (%)
𝐴0 118 025 106 002 2569 7 weeks 99.99 97.36 99.99
𝐴1 118 019 105 205 2570 14 weeks 99.99 97.36 99.99
𝐴2 118 135 105 666 0 21 weeks 99.99 97.36 100.00
𝐴3 117 605 105 445 0 13 weeks 99.99 97.36 99.99
𝐴4 117 229 104 499 0 14 weeks 99.99 97.36 100.00

5.1 Validation
To validate our approach, we aim to answer two questions:

(1) Do libLISA’s encodings cover all instructions on the CPU?
(2) Is libLISA able to synthesize semantics for undefined behavior?
Each of these questions is impossible to answer definitively, without access to an oracle that

provides the ground truth (e.g., a trustworthy hardware design). Such oracles do not exist for x86-64
CPUs, e.g., there is no trustworthy complete overview of the set of all valid instructions for each of
the CPUs. We therefore in this section devise best-effort oracles and answer these questions relative
to those oracles. In that section, we provide an evaluative comparison to related work instead of
relative to a best-effort oracle.

5.1.1 Instruction Coverage. As best-effort oracle, we generate lists of instructions. The first list
consists of instructions extracted from the Linux binaries ls, libxul.so, grep, gcc, ls, perl and
ssh. This generally produces documented instructions, although these instructions are not always
valid instructions on the CPU that is being analyzed.

From the Linux binaries we extracted 3 190 703 instructions. On average, these instructions
covered 4975 distinct encodings. Per architecture, we compute the in-scope coverage 𝐶in as the
percentage of instructions in enumeration scope from the oracle that are covered by an encoding.
The out-of-scope coverage 𝐶out is computed as the percentage of all oracle-instructions that are
covered. Table 5 presents results. On average, libLISA achieves 99.99% in-scope coverage. Uncovered
instructions consist of instructions with the EVEX prefix, which are not supported by any of the
architectures we tested, and the SHA instructions, which are not supported by𝐴4. These instructions
are conditionally executed only when CPU support is detected.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:21

The second approach is to randomly generate byte sequences. This discovers instructions that
can be undocumented or not commonly used in real-world programs, but it is biased to simpler
instructions. We randomly generated an average of 7 719 372 instructions per architecture, covering
8053 encodings on average. Table 5 shows the coverage 𝐶random,in, the percentage of in-scope
oracle-instructions discovered by libLISA, which is 99.9% on average.

5.1.2 Undefined Behavior. We aim to determine how well our approach is able to synthesize
semantics for undefined behavior. By determining the encodings which have undefined behavior
using a best-effort oracle, we can compute the percentage for which libLISA has successfully
synthesized semantics.
The best-effort oracle is a manual translation of the undefined behavior specified in the Intel

Reference Manual to a machine-readable specification. This specification relies on the Intel XED
disassembler library to map bitstrings to instruction variants listed in the Intel Reference Manual.

There is no one-to-onemapping from instruction variants produced by the Intel XED disassembler
library to encodings. This makes it unfeasible to delineate exactly which parts of the instruction
space covered by an encoding exhibit undefined behavior. We therefore define the term “undefined
behavior” conservatively: if even one instruction covered by the encoding has at least one input for
which at least one output is undefined, we consider the encoding to have “undefined behavior”.

We determine if an encoding has “undefined behavior” by randomly sampling instructions
covered by the encoding. Then, we query the oracle separately for each sampled instruction. If the
oracle determines that at least one of the sampled instructions exhibits undefined behavior, we
consider the encoding to have undefined behavior.

The results are shown in Table 6. On average, 90% of the encodings marked as having undefined
behavior by the oracle were synthesized.

Table 6. The number of encodings with undefined behavior that libLISA was able to synthesize.

Synthesized Encodings Percentage
𝐴0 18 548 20 316 91.2%
𝐴1 18 087 20 204 89.5%
𝐴2 17 805 19 578 90.9%
𝐴3 18 123 20 105 90.1%
𝐴4 17 699 19 767 89.5%

5.2 Comparisons with Existing Work
In this section we aim to answer two questions:
(1) Do our semantics cover the same instructions semantics provided by related work?
(2) Are our semantics correct relative to semantics provided by related work?
As related work, we consider the work of Dasgupta et al. [8] (see Section 3 for a more in-depth

discussion on related work). The work provides a mapping of instruction variants to semantics.
Examples of instruction variants are ADD R8, IMM8 and XCHL R32, EAX.

Instruction variants do not easily translate to encodings, or the other way around. An instruction
variant is not a subset of an encoding, nor is an encoding a subset of an instruction variant. It is
also not possible to query all bitstrings that are described by a certain instruction variant. This
makes it impossible to compare instruction variants and encodings directly.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:22 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

5.2.1 Approach. To map encodings to variants, we randomly pick instantiations (i.e., concrete
bitstrings). For each encoding, we generate 10 000 instantiations and filter them such that there
are at most three instantiations with the same mnemonic, operand types and operand equality,
according to objdump (also used by Dasgupta et al.). Then, we find the right instruction variant in
the related work (if it exists) and instantiate it. We export both semantics to the SMTLib format [4],
and check for equivalence using Z3 [9].

It is difficult to export Dasgupta et al.’s semantics, which are specified in the K framework [24],
to SMTLib format. Dasgupta et al. have implemented a conversion to the SMTLib format by
constructing a program containing a single instruction followed by RETQ, then recompiling the
semantics, executing the K prover on the program, extracting the last K state from the output log,
converting this K state to Z3 by parsing the state, generating a Python program that uses the Z3
library to reconstruct the expressions, and then running the Python program. This process is too
slow for 118 000 encodings.
To be able to extract semantics quickly, we have written a minimal parser and rewrite engine

that can process the original K semantics. There are 62 variants which we were unable to process.
Four variants contain incorrect rules (LOOPNE, [V]PCMPISTR[I/M]). We exclude the CLD, STD variants
because these variants use the direction flag, which libLISA does not synthesize. The rest of the 62
variants require functionality that we did not implement, e.g., late-evaluation of RSP in memory
addresses.

It is not always clear which variant should be picked. Dasgupta et al.’s semantics do not specify
immediate value sizes. They attempt to fix this during compilation by always deleting the imm8
variants of instructions that also have imm32 variants, forcing the imm32 variant to be used. However,
their list of instructions is incomplete (for example, sbb_r32_imm8 is missing) We instead inspect
variable names to determine the intended size of immediate values. The semantics also contain
overlapping variants (e.g., shl_r32_one and shl_r32_imm8), we use a heuristic to score variants
and select the most applicable variant.

Some of Dasgupta et al.’s instruction variants are aliases of other variants.We copy the comparison
results from the variant returned by the disassembler to other aliases.

Table 7. Comparative results. We were unable to compare semantics from 62 variants of Dasgupta et al.’s
semantics.

𝐴0 𝐴1 𝐴2 𝐴3 𝐴4

Variants from Dasgupta et al. that. . .
. . . agree with libLISA 1539 1469 1558 1536 1493
. . . disagree with libLISA 32 28 25 23 21

Dasgupta et al. incorrect 28 24 18 18 18
libLISA incorrect 4 4 7 5 3

. . . are incorrectly specified 6 6 6 4 4

. . . are out of enumeration scope for libLISA 744 744 744 744 744

. . . are enumerated but not synthesized by libLISA 635 709 623 649 694

. . . are not discovered by libLISA’s enumeration 0 0 0 0 0

Encodings found by libLISA that. . .
. . . are not covered by Dasgupta et al. 11 027 11 308 11 304 11 426 10 853

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:23

5.2.2 Comparison Results. Table 7 provides the results. A variant agrees with libLISA when for all
concrete bitstrings generated from the encodings, Z3 is able to prove equivalence between libLISA
and Dasgupta et al.’s semantics. A variant disagrees with libLISA when this is not the case. We
discuss the differences between libLISA and Dasgupta et al. in more detail in the rest of this section.

Disagreements (Dasgupta et al. incorrect). We identify errors in 28 variants of the semantics of
Dasgupta et al.:
(1) The overflow flag (OF) of RCLB/RCRB is undefined when the masked rotate count is not 0

or 1. However, Dasgupta et al. specifies the OF as undefined when the masked rotate count
modulo the operand size + 1 is not 0 or 1. (10 variants)

(2) In vmpsadbw_xmm_xmm_m128_imm8, the result is written to the source operand (R3) instead
of the destination operand (R4). (1 variant)

(3) In all bit test variants (BT/BTS/BTR/BTC) on memory with a register bit offset, the bit offset is
computed incorrectly. The bit offset is converted to a byte offset by shifting right by 3, then
zero-extending the result to 64 bits. It should be sign-extended, to preserve the sign bits of
negative offsets. (8 variants)

(4) The CMPS variants perform a comparison by setting flags according to 𝑚2 −𝑚1, but they
should be set according to𝑚1 −𝑚2. (6 variants)

(5) The instruction XCHGL EAX, EAX can be encoded as both 87C0 and 90. The second encoding
has the semantics of NOP (do nothing), while the first has the semantics of XCHGL (set the upper
32 bits of RAX to zero). The disassembler used by Dasgupta et al. incorrectly disassembles 90
with a REX prefix as XCHGL instead of NOP. (1 variant)

(6) The MULX instructions write a result to two destination operands. The destination operands
can be equal. Dasgupta et al.’s semantics have not taken this possibility into account, causing
the K prover to crash when MULX with equal destination operands is executed. (2 variants)

Disagreements (libLISA incorrect). Three to seven disagreements are errors in the semantics
generated by libLISA. Our synthesis accepts semantics as correct when a hypothesis is correct w.r.t.
two million consecutive random observations. In rare cases, these observations do not encompass
all behavior of the instruction, which can lead to incorrect semantics. We see that the same kind
of instruction is more often synthesized incorrectly across different architectures, but the exact
variant differs. For example, 𝐴0 synthesized adc_rax_imm32 incorrectly, while 𝐴1 synthesized that
variant correctly and synthesized adcq_r64_imm32 incorrectly instead. This indicates that these
errors could be prevented by increasing the amount of random observations, or by improving the
quality of the random observations. Some examples of errors are:
(1) The zero flag of the SHLDQ M64, R64, 0x9 instruction is synthesized incorrectly for 𝐴0. The

semantics correctly check that the part of the result from M64 is zero, but incorrectly check
only the lower 8 instead of 9 bits shifted in from R64. This happened because the synthesizer
did not encounter any cases where the lower 8 bits were 0, but the 9th bit was 1.

(2) The overflow flag of the ADC instruction is synthesized incorrectly. The overflow flag being 1
is relatively rare, and the synthesizer has not seen enough cases to form a good hypothesis.

(3) The zero flag of the VPTEST instruction with identical operands is synthesized as always zero.
The synthesizer did not encounter any cases where all 256 bits of the register were zero, and
has therefore not seen any evidence that the zero flag can be non-zero.

Incorrect specifications. There are rel32 variants of the JRCXZ and JECXZ instructions, but these
should only have rel8 variants. One variant of VCVTDQ2PD accepts two YMM operands, while it
should accept one XMM and one YMM operand instead. Two variants, vcvtpd2ps_xmm_m256 and
vcvttpd2dq_xmm_m256, have m128 variants that always match the same instructions. Instructions

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:24 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

from both the m128 and m256 variants will incorrectly use the semantics of only one of the two
variants. Finally, the vpinsrq_xmm_xmm_m64_imm8 variant is a copy of vpinsrq_xmm_m64_imm8.
This is incorrect, as this variant should accept one more XMM register.

Out-of-scope. 744 variants are out of enumeration scope for libLISA, as described in Section 2.3.
Most variants in this category are non-VEX versions of SSE/AVX instructions, which re-use the data
size override prefix 66. For around 396 out-of-scope variants, similar variants without the data size
override prefix agree with libLISA’s semantics. This means that by extending scope and doubling
runtime, libLISA would be able to generate semantics where around 1900 variants would agree.

Synthesis failure. For 623 to 694 variants synthesis failed. This concerns mostly floating point
operations, for which we did not implement support in our synthesis.

Not covered by Dasgupta et al. These encodings include both instructions that Dasgupta et al.
considered out-of-scope, and instructions that Dasgupta et al. considered in-scope. Examples of
variants outside Dasgupta et al.’s scope are: undocumented instructions, instructions operating on
the MMX registers, instructions using segment registers, and recent ISA extensions like the SHA1
and SHA256 instructions. Missing variants within Dasgupta et al.’s scope include: YMM variants
for the VPSIGNB/VPSIGNW/VPSIGND/VPMINSW instructions, vcvtdq2pd_xmm_ymm and retq_imm.

5.3 Use Cases
We demonstrate the feasibility of three use cases:
• comparing CPU-implementations
• discovering and analyzing undocumented instructions
• emulating userspace binaries

5.3.1 Comparing CPU Implementations. By comparing the semantics of different CPU microarchi-
tectures, we can find interesting differences. We describe the differences between the semantics we
found in Table 8.
Most encodings are part of group 0, which have identical semantics across all 5 architectures.

All other groups show differences between architectures. Architecture 0 and 1 often share the
same semantics. This is likely because architecture 1 is a successor of architecture 0. Similarly,
architecture 2 and 4 also often share semantics, and architecture 2 is also a successor of architecture 4.

Group 1, 3, 5, 20 and 28 consist primarily of differences between microarchitectural implementa-
tions. When manually inspecting these groups we find bit shifts, rotates, multiplication, division and
bit manipulation instructions. These are common instructions that can exhibit undefined behavior.

Groups 2, 6-9 and 19 show differences in instruction support. Upon manual inspection, we found
that group 2 contains the undocumented AMD-only instructions. Group 6 contains the SHA1 and
SHA256 instructions, which were introduced after architecture 4 was released. Group 7, 8 and 9
contain various other instructions introduced in x86-64 ISA extensions. Group 19 contains the
VMCALL virtualization instructions, which are Intel-only.

We can also use this table to construct fingerprinting programs. Such a program can identify
the architecture it is running on, among all the analyzed architectures. For example, to distinguish
between the five architectures we analyzed, we could use group 1 and group 7. By observing an
instruction from group 1, we can distinguish between𝐴0,𝐴1 or𝐴2,𝐴4 or𝐴3. Then, by also observing
group 7, we can distinguish between 𝐴0 and 𝐴1 or 𝐴2 and 𝐴4. This would require executing at most
3 instructions and some logic to decode the result.

5.3.2 Discovery and Analysis of Undocumented Instructions. Undocumented instructions are valid
instructions which have not been specified by the manufacturer in their documentation. For

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:25

Table 8. Architecture comparison. Each row describes a group of instructions that differ in a certain way
between architectures. Each symbol represents a different implementation for that specific group of instruc-
tions. For example, there are two implementations for the instructions in group 5: 𝐴0 and 𝐴1 share the same
implementation, and 𝐴2, 𝐴3 and 𝐴4 share another implementation. We re-use the same symbols for each row.
When a cell is left blank, this indicates a missing implementation. For example, the instructions in group 2
are only supported by 𝐴0 and 𝐴1.

Group Encodings 𝐴0 𝐴1 𝐴2 𝐴3 𝐴4

Group 0 95 170 ◦ ◦ ◦ ◦ ◦
Group 1 4777 ◦ ◦ □ △ □
Group 2 2571 ◦ ◦
Group 3 1602 ◦ ◦ □ ◦ □
Group 4 604 ◦ □ △ ▽ ⊗
Group 5 581 ◦ ◦ □ □ □
Group 6 101 ◦ ◦ ◦ ◦
Group 7 40 ◦ ◦ ◦
Group 8 29 ◦ ◦
Group 9 24 ◦
Group 10 16 ◦ ◦ ◦ ◦ □
Group 11 16 ◦ □ □ □ □
Group 12 12 ◦ ◦ □ ◦ ◦
Group 13 9 ◦ ◦ ◦ □ ◦
Group 14 7 ◦ □ ◦ ◦ ◦
Group 15 5 ◦ □ ◦ □ ◦
Group 16 5 ◦ □ □ ◦ △
Group 17 4 ◦ □ □ ◦ ◦
Group 18 3 ◦ ◦ ◦
Group 19 2 ◦ ◦ ◦
Group 20 2 ◦ □ △ ▽ △
Group 21 1 ◦
Group 22 1 ◦ ◦ ◦ ◦
Group 23 1 ◦ ◦
Group 24 1 ◦ ◦ ◦ ◦
Group 25 1 ◦ ◦ ◦ ◦
Group 26 1 ◦ ◦ □ □ ◦
Group 27 1 ◦ □ ◦ △ △
Group 28 1 ◦ □ △ △ △
Synthesis failed 14036

example, on Intel CPUs there used to be an undocumented instruction D6, which was only added
to the Intel reference manual as the SALC instruction in 2017.
We use the Intel XED disassembler library as an oracle to determine whether instructions are

documented. To eliminate false positives, we manually verified the undocumented instructions we
found against the Intel and AMD reference manual and objdump.

The results are listed in Table 5. We identified one group of undocumented instructions on AMD
CPUs. We did not identify any undocumented instructions on Intel CPUs. It is possible that our

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

283:26 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

results are favoring Intel CPUs because we are using a disassembler library created by Intel. While
we were able to manually confirm that all undocumented instructions are indeed undocumented,
there might be undocumented instructions on Intel CPUs that XED incorrectly decodes successfully.

The semantics of the group of undocumented instructions on the AMDCPUsmatch the semantics
of the VPERMQ instruction. The VPERMQ expects VEX.W to be 1. These undocumented instructions
are bit-for-bit identical with VPERMQ variants except for VEX.W, which is 0. We suspect that the
decoding logic for the VEX prefix does not check the value of VEX.W, and causes the instructions
to be treated as if they were valid VPERMQ instructions.

5.4 Emulating Userspace Binaries
We implement a proof-of-concept emulator that uses libLISA’s semantics as-is to emulate x86-64
ELF binaries. The emulator uses the semantics from the 118 000 encodings, and runs encoding
analysis and synthesis on-the-fly for instructions that are out-of-prefix-scope. This makes it possible
to fully emulate some Linux binaries that do not use floating-point instructions. Table 9 presents
the binaries we have successfully emulated on an AMD 3900X.

The emulator stores the emulated CPU state in a data structure. During execution, it repeatedly
modifies the emulated CPU state. To execute an instruction, it reads memory at the address stored
in the emulated RIP. The semantics for the instruction are found by searching through libLISA’s
semantics. If no suitable semantics are found, on-the-fly encoding analysis and synthesis is invoked.

The semantics are executed by fetching inputs, computing results, and then storing results. First,
the values of all sources in the dataflows are fetched by reading the value from the data structure
storing the emulated CPU state or memory. Then, the new values for all destinations are computed
using the synthesized computations in the semantics. Finally, the new values are written to the
destinations.
The emulator provides handwritten implementations for the SYSCALL, XGETBV and CPUID in-

structions. Additionally, we treat four additional instructions as NOPs: ICEBP, RDTSC, XSAVEC, and
XRSTOR. For all other instructions we use semantics generated by libLISA.

We verify the emulated instructions against the real CPU behavior using the CPU observer. For
each instruction we emulate, we compute the next CPU state, and then observe the real next CPU
state. If these differ, we abort execution. In total, we have verified 1 244 385 instruction executions
against the real CPU behavior.

Table 9. Binaries that we are able to emulate successfully on an AMD 3900X CPU.

Binary Number of instructions
Hello world 98 813
/bin/true 120 969
/bin/ls /dev/null 321 084
/bin/ls -hla /dev/null 401 037
/bin/date 172 827
/bin/echo ‘abc’ 129 655

We emulate the binary itself, the dynamic linker (/lib64/ld-linux-x86-64.so.2), and all
dynamically loaded binaries (e.g., libc.so). This reduces the manual implementation effort, as we
can rely on the dynamic linker to link dependencies automatically, instead of having to implement
these manually. It also significantly increases the amount of instructions that are executed for
simple binaries. The hello world binary consists of one call to printf, consisting of around 100

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

libLISA: Instruction Discovery and Analysis on x86-64 283:27

instructions, with the rest of the executed instructions being in the dynamic linker and the C
standard library.

6 Discussion and Conclusion
We presented libLISA, a tool for automated discovery of instructions executable on a given CPU,
as well as synthesis of their semantics. At its core, libLISA is based on fuzzing, which means that
synthesis may produce incorrect semantics for an instruction. We evaluate that this happens for
about three to seven instruction variants per run. This could be reduced by increasing the amount
of random inputs that are generated, or by changing the distribution of the random numbers that
are generated such that the rare cases are more observable. However, it is difficult to do this in a
way that generalizes to any instruction. We argue that this is inherent to bottom-up derivation of
instruction sets and their semantics. Without access to an oracle that provides a trustworthy and
formal semantics of the entire instruction set of a CPU, libLISA provides the most extensive and
trustworthy formalization of the x86-64 ISAs to date.
Trustworthy semantics are the base of any binary-level effort. For example, BAP [6] (Binary

Analysis Platform) has – for the x86 architecture – a manually written translation from instructions
into an intermediate language. They test their semantics against a CPU. It would be interesting to
combine libLISA’s semantics with BAP, reducing the trusted code base.

We believe libLISA’s approach would work on other modern general-purpose CPU architectures.
Only the CPU observer is architecture-specific, and would have to be implemented from scratch
for a new architecture. Architectures such as ARM or RISC-V would be suitable candidates. With
these architectures, a bit in an instruction often also serves a single purpose.

We ran our analysis on an Intel i9-13900 CPU, which was affected by the Reptar bug.1 Unfortu-
nately, the REP prefix is part of the instruction prefixes we consider out of scope (see Section 2.3).
We argue that libLISA would have discovered this bug if the REP prefix was considered in-scope.
The main characteristic of this bug is that it causes non-deterministic output. This would be picked
up upon during dataflow analysis, where the entire CPU state would be considered input. Such
instructions (e.g., RDTSC or RDRAND) are flagged automatically because synthesis is known to fail.

In Table 7, there are around ten fewer disagreements with Dasgupta et al. on Intel CPUs than on
AMD CPUs. This is because of the incorrect specification of undefined behavior in the RCLB/RCRB
variants. The behavior specified by Dasgupta et al. matches Intel’s implementation of this undefined
behavior, not AMD’s. This highlights the importance of verifying specifications on multiple CPUs.

We only discover and analyze userspace instructions. The primary reason for this is that the CPU
observer needs to execute instructions in ring 3 (userspace) for sandboxing. It would be possible to
analyze privileged instructions by implementing a CPU observer as hypervisor. Whether automatic
analysis would be effective for privileged instructions is unclear. In userspace, we can reasonably
assume that an instruction, for example, does not change CPU configuration, modify the page table
base register PTBR or unmap memory. Our analysis depends on these assumptions. Significant,
non-trivial modifications are needed to analyze privileged instructions.

Acknowledgments
We thank the anonymous reviewers for their insightful comments, which have greatly improved
the paper.

This work is supported by the Defense Advanced Research Projects Agency (DARPA) and Naval
Information Warfare Center Pacific (NIWC Pacific) under Contract No. N66001-21-C-4028.

1https://lock.cmpxchg8b.com/reptar.html

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

https://lock.cmpxchg8b.com/reptar.html

283:28 Jos Craaijo, Freek Verbeek, and Binoy Ravindran

Data-Availability Statement
The analysis results are available in an easily browsable format on https://explore.liblisa.nl/. The
libLISA implementation is available under the AGPLv3 open source license on https://github.com/
liblisa. A self-contained reproduction package is available on Zenodo [7].

References
[1] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and

Conquer. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2017), Axel Legay and Tiziana
Margaria (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 319–336. https://doi.org/10.1007/978-3-662-54577-5_18

[2] Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama. 2018. Search-Based Program Synthesis.
Commun. ACM 61, 12 (Nov. 2018), 84–93. https://doi.org/10.1145/3208071

[3] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth
Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell.
2019. ISA semantics for ARMv8-a, RISC-v, and CHERI-MIPS. Proc. ACM Program. Lang. 3, POPL, Article 71 (jan 2019),
31 pages. https://doi.org/10.1145/3290384

[4] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The SMT-LIB Standard: Version 2.0. In Proceedings of the 8th
international workshop on satisfiability modulo theories (Edinburgh, UK), Vol. 13. 14.

[5] Andrew Barrington, Steven Feldman, and Damian Dechev. 2015. A scalable multi-producer multi-consumer wait-free
ring buffer. In Proceedings of the 30th Annual ACM Symposium on Applied Computing (Salamanca, Spain) (SAC ’15).
Association for Computing Machinery, New York, NY, USA, 1321–1328. https://doi.org/10.1145/2695664.2695924

[6] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011. BAP: A Binary Analysis Platform.
In Computer Aided Verification, Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 463–469. https://doi.org/10.1007/978-3-642-22110-1_37

[7] Jos Craaijo, Freek Verbeek, and Binoy Ravindran. 2024. Reproduction package (Docker container) for the OOPSLA 2024
Article “libLISA: Instruction Discovery and Analysis on x86-64”. Zenodo. https://doi.org/10.5281/zenodo.13380062

[8] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and Grigore Roşu. 2019. A Complete Formal
Semantics of X86-64 User-Level Instruction Set Architecture. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI ’19). Association for Computing
Machinery, New York, NY, USA, 1133–1148. https://doi.org/10.1145/3314221.3314601

[9] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2008), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[10] Rens Dofferhoff, Michael Göebel, Kristian Rietveld, and Erik van der Kouwe. 2020. iScanU: A Portable Scanner for
Undocumented Instructions on RISC Processors. In 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2020). 306–317. https://doi.org/10.1109/DSN48063.2020.00047

[11] Christopher Domas. 2017. Breaking the x86 ISA. https://github.com/xoreaxeaxeax/sandsifter Accessed on 02/05/2024.
[12] Patrice Godefroid and Ankur Taly. 2012. Automated synthesis of symbolic instruction encodings from I/O samples.

In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation (Beijing,
China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA, 441–452. https://doi.org/10.1145/
2254064.2254116

[13] Shilpi Goel, Warren A. Hunt, Matt Kaufmann, and Soumava Ghosh. 2014. Simulation and Formal Verification of
x86 Machine-Code Programs that make System Calls. In Proceedings of the 14th Conference on Formal Methods in
Computer-Aided Design (Lausanne, Switzerland) (FMCAD ’14). FMCAD Inc, Austin, Texas, 91–98. https://doi.org/10.
1109/FMCAD.2014.6987600

[14] Niranjan Hasabnis and R. Sekar. 2016. Extracting instruction semantics via symbolic execution of code generators. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (Seattle,
WA, USA) (FSE 2016). Association for Computing Machinery, New York, NY, USA, 301–313. https://doi.org/10.1145/
2950290.2950335

[15] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016. Stratified synthesis: automatically learning the
x86-64 instruction set. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA,
237–250. https://doi.org/10.1145/2908080.2908121

[16] Nathan Jay and Barton P. Miller. 2018. Structured random differential testing of instruction decoders. In 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering (SANER). 84–94. https://doi.org/10.1109/
SANER.2018.8330199

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

https://explore.liblisa.nl/
https://github.com/liblisa
https://github.com/liblisa
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1145/3208071
https://doi.org/10.1145/3290384
https://doi.org/10.1145/2695664.2695924
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.5281/zenodo.13380062
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/DSN48063.2020.00047
https://github.com/xoreaxeaxeax/sandsifter
https://doi.org/10.1145/2254064.2254116
https://doi.org/10.1145/2254064.2254116
https://doi.org/10.1109/FMCAD.2014.6987600
https://doi.org/10.1109/FMCAD.2014.6987600
https://doi.org/10.1145/2950290.2950335
https://doi.org/10.1145/2950290.2950335
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1109/SANER.2018.8330199
https://doi.org/10.1109/SANER.2018.8330199

libLISA: Instruction Discovery and Analysis on x86-64 283:29

[17] Doug Kwan, Kostik Shtoyk, Kostya Serebryany, Maxim L Lifantsev, and Peter Hochschild. 2021. SiliFuzz: fuzzing CPUs
by proxy. Google Research (2021). https://doi.org/10.48550/arXiv.2110.11519

[18] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (jul 2009), 107–115. https:
//doi.org/10.1145/1538788.1538814

[19] Xixing Li, Zehui Wu, Qiang Wei, and Haolan Wu. 2019. UISFuzz: An Efficient Fuzzing Method for CPU Undocumented
Instruction Searching. IEEE Access 7 (2019), 149224–149236. https://doi.org/10.1109/ACCESS.2019.2946444

[20] Junghee Lim and Thomas Reps. 2013. TSL: A System for Generating Abstract Interpreters and its Application to
Machine-Code Analysis. ACM Trans. Program. Lang. Syst. 35, 1, Article 4 (apr 2013), 59 pages. https://doi.org/10.1145/
2450136.2450139

[21] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi. 2009. Testing CPU emulators. In
Proceedings of the Eighteenth International Symposium on Software Testing and Analysis (Chicago, IL, USA) (ISSTA ’09).
Association for Computing Machinery, New York, NY, USA, 261–272. https://doi.org/10.1145/1572272.1572303

[22] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward Gan. 2012. RockSalt: better, faster,
stronger SFI for the x86. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (Beijing, China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA, 395–404.
https://doi.org/10.1145/2254064.2254111

[23] Alastair Reid. 2016. Trustworthy specifications of ARM® v8-A and v8-M system level architecture. In Proceedings of
the 16th Conference on Formal Methods in Computer-Aided Design (Mountain View, California) (FMCAD ’16). FMCAD
Inc, Austin, Texas, 161–168. https://doi.org/10.1109/FMCAD.2016.7886675

[24] Grigore Ros,u and Traian Florin S, erbănută. 2010. An overview of the K semantic framework. The Journal of Logic and
Algebraic Programming 79, 6 (2010), 397–434. https://doi.org/10.1016/j.jlap.2010.03.012 Membrane computing and
programming.

[25] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic superoptimization. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages and Operating Systems (Houston, Texas,
USA) (ASPLOS ’13). Association for Computing Machinery, New York, NY, USA, 305–316. https://doi.org/10.1145/
2451116.2451150

[26] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. x86-TSO: a
rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM 53, 7 (jul 2010), 89–97. https:
//doi.org/10.1145/1785414.1785443

[27] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial sketching
for finite programs. In Proceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems (San Jose, California, USA) (ASPLOS XII). Association for Computing Machinery,
New York, NY, USA, 404–415. https://doi.org/10.1145/1168857.1168907

[28] Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. 2024. Cascade: CPU Fuzzing via Intricate Program Generation.
In 33rd USENIX Security Symposium (USENIX Security 24). USENIX Association, Philadelphia, PA, 5341–5358.

[29] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO:
A Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3, Article 22 (jun 2013), 50 pages. https://doi.org/
10.1145/2487241.2487248

Received 2024-04-04; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 283. Publication date: October 2024.

https://doi.org/10.48550/arXiv.2110.11519
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1109/ACCESS.2019.2946444
https://doi.org/10.1145/2450136.2450139
https://doi.org/10.1145/2450136.2450139
https://doi.org/10.1145/1572272.1572303
https://doi.org/10.1145/2254064.2254111
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/2487241.2487248

	Abstract
	1 Introduction
	2 Overview
	2.1 CPU Observers
	2.2 Encodings and Semantics
	2.3 Scope

	3 Related Work
	4 Approach
	4.1 CPU Observer
	4.2 Enumeration
	4.3 Encoding Analysis
	4.4 From Encoding to Semantics

	5 Results
	5.1 Validation
	5.2 Comparisons with Existing Work
	5.3 Use Cases
	5.4 Emulating Userspace Binaries

	6 Discussion and Conclusion
	Acknowledgments
	References

